<< Back to Podcasts

Petra Hajkova

Exploring DNA Methylation and TET Enzymes in Early Development (Petra Hajkova)

Episode 152

June 5, 2025

In this episode of the Epigenetics Podcast, we talked with Petra Hajkova from the MRC Laboratory of Medical Sciences about her work on epigenetics research on mammalian development, highlighting DNA methylation, histone modifications, and TET enzymes, along with her journey in molecular genetics and future research on epigenetic maintenance.

Dr. Hajkova's early work focused on DNA methylation and resulted in innovative collaboration that allowed her to develop bisulfide sequencing techniques. We discuss her transition to the UK, where she began working in Azim Surani's lab at the University of Cambridge. Dr. Hajkova describes the excitement of researching chromatin dynamics in the mouse germline, leading to significant findings published in Nature. Her story highlights the intense yet rewarding nature of postdoctoral research as she navigated the complexities of working with embryos for the first time.

As her research progressed, Dr. Hajkova established her own lab at the MRC London Institute of Medical Sciences, where she became a professor in 2017. We delve into her investigations on the differences between embryonic stem cells and embryonic germ cells regarding their distinct developmental origins. Dr. Hajkova outlines the challenges she faced in understanding the mechanisms behind global DNA demethylation in germline cells and the role of hydroxymethylation during early development.

The discussion further covers her exciting findings regarding the specific functions of TET enzymes and their regulatory roles in maintaining epigenetic states. We explore her recent research published in Nature, which provides insights into the transition from primordial germ cells to gonocytes, emphasizing the significance of various epigenetic mechanisms in germline development.

 

Active Motif DNA Methylation Products

 

References

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008 Apr 17;452(7189):877-81. doi: 10.1038/nature06714. Epub 2008 Mar 19. PMID: 18354397; PMCID: PMC3847605.
  • Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010 Jul 2;329(5987):78-82. doi: 10.1126/science.1187945. PMID: 20595612; PMCID: PMC3863715.
  • Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, Borkowska M, Terragni J, Vaisvila R, Linnett S, Bagci H, Dharmalingham G, Haberle V, Lenhard B, Zheng Y, Pradhan S, Hajkova P. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature. 2018 Mar 15;555(7696):392-396. doi: 10.1038/nature25964. Epub 2018 Mar 7. PMID: 29513657; PMCID: PMC5856367.
  • Huang TC, Wang YF, Vazquez-Ferrer E, Theofel I, Requena CE, Hanna CW, Kelsey G, Hajkova P. Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature. 2021 Dec;600(7890):737-742. doi: 10.1038/s41586-021-04208-5. Epub 2021 Dec 8. PMID: 34880491.

Related Episodes